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In many of problems of body rolling caused by waves, it is of interest to study body motion that is 
established after a long period (compared with the wave period). Body drift is an example of such slow motion. 
Stationary forces and moments that cause this motion are determined by solving the nonlinear problem of 
wave-body interaction. To this end, the method of perturbations with the surface-incident-wave amplitude 
as a small parameter is commonly used. Second-order forces were first studied by Ogilvie [1], who found the 
vertical drift of a free submerged circular cylinder of neutral buoyancy under the action of surface waves. The 
second-order theory which is applied in ship hydrodynamics is given in great detail in [2]. 

An interesting phenomenon observed in studies of horizontal drift of submerged bodies is the possibility 
of body motion against waves. A solution of the corresponding problem and a literature survey for a circular 
cylinder are given in [3]. In addition, it is known that waves breaking over an underwater obstacle can also 
cause its motion against incident waves [4]. For bodies that cross a free surface, horizontal drift motions 
have been studied most extensively (see, for example, [5]). The question of orientation of three-dimensional 
elongated bodies is discussed in [6]. It has been shown that in short waves the body is oriented perpendicular 
to the direction of wave propagation. In long waves another stable orientation parallel to this direction is also 
possible. 

The problem of orientation of a submerged body about the horizontal axis is the least understood. 
This problem is of great interest, since quite small values of the res'~oring forces and moments are typical of 
submerged bodies. The stationary second-order wave moment acting upon a submerged ellipsoid of revolution 
was determined by Lee and Newman [7]. It has been shown that under the action of incident periodic waves 
a moment arises that lowers the part of the ellipsoid that first meets the waves. 

In this paper, the behavior of a submerged elliptical cylinder which can rotate freely about the 
horizontal axis under the action of incident waves is studied theoretically and experimentally. Initially, when 
the liquid is not perturbed, the cylinder is in neutral equilibrium. Special attention is given to the study of the 
conditions of existence of steady (on the average) states of the cylinder that are consistent with the parameters 
of the waves incident on the body. The second-order averaged moment was determined theoretically for an 
infinite reservoir and for the case of reflection from a wave breaker, observed experimentally. It was shown that 
in the absence of reflected waves the orientation of an elliptical cylinder for a given submersion depends on the 
wavelength. If reflection occurs, the dependence of the orientation on the reflection coefficient and the phase 
of the reflected wave becomes more significant. Experimental data are in good agreement with the calculation 
results. In the experiments we found, in addition, some regimes in which the behavior of the system was 
dependent on the initial conditions. Under small perturbations, the cylinder oscillates about a certain mean 
position, while under strong perturbations (shocks) it begins to rotate under the action of waves. 

The experimental investigation of the behavior of an elliptical cylinder under the action of waves was 
carried out in a reservoir which was 4.5 m in length, 0.2 m in width, and 0.8 m in height. A schematic 
diagram of the setup is shown in Fig. 1. The reservoir had a wave maker 1 of the plunger type, which 
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Fig. 1 

oscillated sinusoidally, and a wave breaker 2, which was a flat plate tilted at 7 ~ The lower end of the breaker 
was submerged 7 cm below the free surface. The water depth in the reservoir H was 24 cm. The elliptical 
cylinder 19.8 cm in length with 6- and 3-cm axes was placed at a distance of 170 cm from the wave maker with 
its center submerged h = 6 cm below the unperturbed free surface. The cylinder could rotate freely about the 
geometric center on bearings similar to those used in a watch pendulum. The radial clearance of the bearings 
did not exceed 0.05 mm. The cylinder was of neutral buoyancy in order to reduce friction. Accurate balancing 
was performed, so that when the fluid was in the unpertubed state, the cylinder was in neutral equilibrium 
with respect to the rotation angle 0. 

The measurement of the orientation angle of the elliptical cylinder under the action of waves was 
performed visually by aligning the sighting line of a goniometer placed coaxially with the cylinder outside of 
the reservoir with the sighting line drawn on the main axis of the elliptical cylinder. The amplitude of steady 
angular oscillations did not exceed 2 ~ , which allowed the time-averaged orientation angle of the cylinder to 
be determined with sufficient accuracy. After each measurement the cylinder was turned through 180 ~ to 
exclude the effect of inaccuracy in balancing. Once the steady state had been reached, the orientation angle 
was measured again. The spread in values of the angles thus determined did not exceed =t=4 ~ . The amplitude 
and the frequency of incident waves were measured by resistive wavemeters 3 placed to the right and to the 
left of the cylinder [8]. The wavemeter readings were processed by a computer in real time. Primary attention 
was given to the cylinder behavior that was established after prolonged operation of the wave maker (from 
500 to 2,000 oscillation periods). 

Two series of tests were performed. In the first series, the location of the wave maker was not varied. 
The oscillation frequency w and amplitude A of the wave maker were varied. The results of the tests are given 
in Fig. 2. The abscissa is the circular frequency w of the incident waves and the ordinates are the angles of 
orientation 00 of the main axis of the elliptical cylinder. Points I-III  correspond to A = 1, 1.5, and 2 cm. 
The orientation of the cylinder was found to be practically independent of A and hence of the amplitude of 
the incident surface wave r i. The orientation angle of the cylinder changes with the frequency of the incident 
waves. The frequency ranges of stable orientation are separated by narrow frequency bands (lines 1-5) at 
which the cylinder begins to rotate, making a full revolution within 6-12 periods of the incident waves. In 
short waves, the orientation Of the main axis of the cylinder is almost vertical. The behavior of the system 
remains practically unchanged with a change in the submersion level of the cylinder. 

The dependence of the cylinder orientation on the wave frequency and the existence of discrete 
frequencies at which the cylinder begins to rotate can be explained by the presence of waves reflected from 
the wave breaker. 

The behavior of the elliptical cylinder as a function of the reflected wave phase fl was studied in the 
second series of tests. In the case of partial reflection of waves from the wave breaker, the trajectories of 
the fluid particles are a superposition of trajectories observed for stationary and progressive waves [9]. The 
reflection coefficient R is defined by the ratio R = (rll -y2)/(~1 +772), where rll and ~72 are the wave amplitudes 
at the maximum and minimum regions of the wave envelope, respectively. The measured values of R versus 
w are shown in Fig. 3. 

The phase of the reflected wave was varied by horizontal displacement of the wave breaker. After decay 
of the transient process, the orientation angles of the cylinder and the reflection coefficient were measured. The 
latter remained constant throughout the test. It was found that in long waves with large reflection coefficients 
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Fig. 2 

(R > 0.2), displacement of the wave breaker leads to changes in orientation of the cylinder from vertical near 
the minimum of the wave envelope to horizontal near the maximum, and 00 changes almost linearly with the 
phase fl of the reflected wave. The orientation of the cylinder has a spatial periodicity, i.e., it changes by 180 ~ 
when the horizontal coordinate of the wave breaker is changed by a half-wavelength. 

For short waves and small reflection coefficients (R < 0.015), the orientation angle 00 was found to be 
100 ~ 4- 4 ~ in the absence of wave breaking over the cylinder. In the case of waves of large amplitude, wave 
breaking occurred and 00 = 85 ~ 4-4 ~ which is in agreement with the data on the negative drift of underwater 
obstacles in breaking waves [4l. 

For intermediate values of R and wavelengths, the behavior of the cylinder was complexly dependent 
on the wave phase. Near the minimum of the wave envelope (i.e., when the reflected wave phase was ,~ 180~ 
the cylinder was stably oriented within a sector of 00 close to 90 ~ 

Near the maximum of the wave envelope, no stable orientation of the cylinder exists, and it begins 
to rotate. Note that rotation of this type with a much longer period than the incident wave period has not 
been well studied. The literature covers only the rotation of sinai[ bodies that have characteristic dimensions 
smaller than the local amplitude of oscillations of fluid particles. In this case, the rotation frequency is equal 
to that of the incident waves. A special case of rotation of an airfoil is discussed in [10]. 

In the intermediate region between the maximum and the minimum of the wave envelope, the behavior 
of the cylinder depends on the initial conditions. For small perturbations, the cylinder has a stable mean 
orientation under the action of waves. In the case of strong perturbations (shocks), the cylinder begins to 
rotate under the action of waves. In this case, the cylinder adjusts the waves so that they maintain this 
rotation. 

Thus, at a given wave frequency, which depends on the horizontal coordinate of the wave breaker, 
stable orientations of the cylinder exist within a certain sector of angles. For the characteristic R observed in 
the tests, the experimental relationship between the width of this sector and the frequency of incident waves 
is shown in Fig. 4. In the absence of strong perturbations (shocks), the range of stable values of 00 is bounded 
by curves 1. The range of values of 00 that are stable against strong pertubations is narrower and is shown 
by curves 2. The dots show the experimental data. For the angles between curves 1 and 2, "severe" loss of 
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stability is typical. The higher the wave frequency, the narrower the sector of the angles realized. As follows 
from Fig. 4, the orientation angle 00 becomes independent of the reflected wave phase for w > 18 rad/sec and 
R < 0.015. 

From a physical point of view, two factors govern the behavior of the cylinder: 1) the influence of 
the stationary component of the wave and 2) the suction force due to high-speed flow around the edge of 
the ellipticM cylinder. The second factor determines the orientation of the cylinder in short waves. Near the 
minimum of the wave envelope, both effects act in the same direction and lead to stable vertical orientation 
of the cylinder. Near the maximum of the wave envelope the effects act in opposite directions, and this leads 
to rotation of the cylinder. 

The theoretical solution is based on the hypothesis that the value of the mean angle 00 for steady 
angular oscillations of the cylinder corresponds to the value at which the second-order moment M(2) averaged 
over the oscillation period is equal to zero and its derivative OM(2)/O0[O=Oo is negative (positive) if the rules 
of signs for the moment and for the angle are the same (different). Using the linear theory of rolling with 
regular waves, we determine the average second-order moment acting on a submerged elliptical cylinder. 

Let us consider the two-dimensional problem for a semi-infinite homogeneous fluid. It is assumed that 
the fluid is nonviscous and incompressible and that its flow is potential. The velocity potential ~0 (x, y, t) for 
a surface wave incident from the right is 

�9 0 = [r exp(i t)], (1) 

where ~b0(x, y) = ig exp[k (y + ix)i/w; k = w2/g is the wave number; and g is the acceleration of gravity. The 
x axis of the fixed coordinate system coincides with the unperturbed free surface and the y axis is directed 
verticMly upward .  

Under the action of this wave a submerged elliptical contour with fixed center begins to move. It is 
assumed that with time it enters the regime of angular oscillations about a certain mean position with the 
main axis inclined at angle 0 to the horizon. We write the equation for the elliptical surface at its mean 
position as So(x, y) = O, where 

So = (x cos 6 + yz sin ~)2/a2 -b (x sin 0 - yl cos 8)2/b 2 - 1; 

a and b are the major and minor semiaxes of the ellipsoid, respectively; Yl -- Y + h; and h is the depth of 
submersion of its center. 

The velocity potential �9 (x, y, t) of the fluid motion satisfies the Laplace equation 

~ = 0 (2) 
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with the boundary conditions on the free surface y = Y(z, t) 

O@ c3Y c~@ c~Y 
Oz Ox O--y + -0/- = 0; 

+ IVr 2 + gY = O, 

(3) 

(4) 

and on the body surface S (z, y, t) = 0 

OS 
vevs+ ~ = 0. (5) 

The function S, which describes the instantaneous position of the body, is 

S = (XCl + YlSl)2/a 2 + (XSl -- ylCl)2/b 2 -- 1. 

Here cl = cos (8 + ~(t)); s, = sin(8 + ~(t)); the function 0 (t) describes small angular deviations of the main 
axis of the elhpsoid from its mean position. The amplitude of the incident surface wave is assumed to be 
small, and, according to the method of perturbations, each dependent variable can be represented as a series 
in a certain small parameter s. Thus, the series for the function @ (x, y, t) is written as 

r ( x , y , t )  = sr + e2r + . . . .  (6) 

We also assume that the boundary conditions at two nonstationary boundaries can be extended to unperturbed 
positions of these boundaries by means of Fourier series. Substituting series (6) into Eq. (2) and boundary 
conditions (3)-(5) and using the representation for the potential adopted in the theory of rolling, 

r (x, y, t) = Re {[q(r + CD) + CCa] exp(/wt)}, 

we have the following problem for first-order terms: 

A~) D = O, A~) R = O, W2~/D = gO~D/Oy,  C027/r'R = gO~)R/Oy (y = 0), 

OCD/On = - O r  OCR/On = - i w r  x n (x, y E So). 

Here CD is the diffraction potential, which describes the wave motion of the fluid resulting from scattering of 
an incident wave with potential r by a fixed elliptical contour with orientation angle 0; CR is the radiation 
potential due to rotational oscillations of the body that obey the law d(1)(t) = Re[~ exp(iw/)]; ~ is the complex 
amplitude; r = (z, Yl) is the radius vector of a point on the ellipsoid surface with respect to the fixed center 
of the dlipsoid; n is the inward normal to the body surface. In the far field, the conditions of radiation decay 
of the wave process for y ~ - o o  should be satisfied. 

In the problem considered the motion of the body is due only to the moment of hydrodynamic forces 
that acts on the body: M(t)  = f pr • nds.  The pressure p (x, y, t) is determined ignoring the hydrostatic 

S=0 
forces: 

v = - p  + I v r  2 (7) 

(p is the fluid density). A positive value of the moment causes counterclockwise motion of the body. The 
functions p and M can also be expanded into a series in e similar to (6): 

p = r + r  + - - . ,  M = c M  (1) -4- r  -4- . . . .  

Using (7) we obtain: 

0r 
p(1) = - p  0t ' 

= f 0r 
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M (2) = --p [ 
, /  

So=O 

Replacing the integration over the instantaneous position of the body S = 0 by integration over the contour 
So = 0 in calculations of the moment (details see, for example, [1]), we obtain 

0(I)(1) 
M O ) = - p  --[ ~ r x n d s ,  

So=O 

0(I)( 0t + 11Vr 00)(z02'~(1) 02r 
0 y &  - x n d s .  

It is known [2] that because of the sinusoidal oscillations of the function (I)(r) the value of the second- 
order moment M(2) averaged over the oscillation period does not depend on the second-order potential and 
is determined only by first-order solutions. 

The linear theory of rolling of a submerged cylinder has been well studied, and there are a number of 
numerical methods for solution of this problem (see, for instance, [11, 12] and the references therein). The 
moment of hydrodynamic forces in a linear approximation is M(D(t) = Re[(FD + FR)exp(iwt)], where the 
diffraction moment is 

FD=--iWprl [ ( r 1 6 2 2 1 5  
So=O 

and the radiation _moment is 
f 

FR = --iwp( [ ~bR r x nds = ( (w2# - iwA). 
So=O 

The real # and A are known as the added mass and damping coefficients, respectively. 
Using the equation of rotation of a solid body about a fixed axis IdO(1)/dt = M (1) (I is the moment 

of inertia of the ellipse about the rotation axis) we obtain: ( = FD/[iwA - w2(i + #)]. This leads to the final 
expression for M(2) 

M(2) = --2P f cl , ~]rl~Or .4_ (~(~R 2 + wr. nRe [i( *(~,q---~-s0~)D Jr" (~s.]J-O~bR'~] }r • n ds 
So=0 

(here the asterisk denotes the complex conjugate). 
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The first-order radiation and diffraction problems were solved numerically using the coupled finite- 
element method for a/b = 2 and h/b = 4 for various angles of attack and various wavelengths. This method 
is described in detail in [11, 12]. The number of finite elements in the calculations was 18. The dependence 
of the first-order characteristics #, X, and FD on the slope of the ellipse is of special interest. The damping 
coefficient undergoes the greatest changes. 

Values of A = Xw/pgb 3 for angles 0 = 0, 30, 60, and 90 ~ are given in Fig. 5 (curves 1-4). Values are 
given only for 0 ~< ~r/2, since it can be easily shown that X(k, 0) = X(k, ~r - 0). The same relationship is 
also valid for the added mass coefficient #. The latter, however, depends only slightly on 0, and its relative 
deviation from the case of 0 = 0 does not exceed 3% in the indicated range of parameter variation. The 
diffraction moment is known to be related to the damping coefficient by the Haskind-Newman relation (for 
details see, for example, [12]). 

Curves of equal value for the function M2 = M(2)/pT12gb are shown in Fig. 6. Because of nonuniformity 
of the elliptical cylinder in the experiment, the moment of inertia of the ellipse in the calculations was specified 
as I = 1.1610, where I0 = ~rpbab (a 2 + b2)/4. The average density Pb of the cylinder material was practically 
(with accuracy to 1%) equal to the water density p. It is evident that for long waves the average second-order 
moment is positive, and the elliptical cylinder rotates in the counter-clockwise direction under the action of 
waves with wave numbers kb <<. 0.15. Under the action of short waves (kb > 0.6) in the stationary regime 
the cylinder oscillates about its vertical (00 = 90 ~ position. In the intermediate range of wavelengths, the 
cylinder (on the average) takes an inclined position with orientation angle 90 ~ ~< 00 ~< 130 ~ which depends 
on the wavelength. In Fig. 6, the hatched region shows experimental data according to which the cylinder is 
oriented at an angle 00 = 100 ~ 4- 4 ~ for kb > 0.5. 

In the theoretical solution one can also take into account the combined action of an incident wave with 
potential (1) and a reflected wave with velocity potential ~0 = r/Re[~0 exp (iwt)], ~0 (z, y) = ig~exp [k (y - 
iz)]/w, where the complex value a = Rexp(i/3) determines the reflection coefficient R and the phase of 
this wave ft. Proceeding from the type of reflected wave, one can easily show that the diffraction potential 
of the reflected wave @D is related to the analogous parameter of the incident wave by the simple relation 
~D = --r  The first-order moment in this case is 

M(1)(t) = -pwRe{iexp(iwt) f [71 (~o + CD + a (r  + r  + (r  r x nds}, 
5"0=0 
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t he  amplitude of forced oscillations of the body in the presence of a reflected wave is 

( = (fD + aFb)/[iwA - w2(I + #)], 

and the mean second-order moment is 

_-  { 1 2" 0r 2 OCRI  1 M(2)-- 2 P f 2 [  r/2(1 + R ) ~  + t ~ ' ~  j 
So=o 

+ R e [ , "  OCR ( 0 r  a* 0r (0r (OCD _ a O r  _0r 
~(--~'-s \ Os "-~'-s ]--a*rl \--~s ] ]+iw( 'r 'n(17\- -~-s  Os Z + r  ) l  xnds .  

The following values of wave numbers and reflection coefficients were selected from the experimental 
data: 1) kb = 0.47, R = 0.014, 2) kb = 0.24, R = 0.08, 3) kb = 0.16, R = 0.19. The dependence of M2 on 
the slope of the ellipse and on the phase of the reflected wave was calculated. In the first case there is no 
influence of the phase/3, because of the small contribution of the reflected wave. The results for the second 
and third cases one are given in Figs. 7a and 7b, respectively (crosses show the experimental data and their 
dispersion). An interesting feature of the third case is that for any phase of the reflected wave, the cylinder 
oscillates about a certain mean angle 00 which depends almost linearly on/3. 

This comparison shows that the hypothesis proposed here is supported by experimental data. 

R E F E R E N C E S  

. 

2. 
3. 

4. 

~ 

6. 
7. 

8. 

. 

10. 

11. 

12. 

T. F. Ogilvie, "First and second-order forces on a cylinder submerged under a free surface," J. Fluid 
Mech., 16, No. 3, 451-472 (1963). 
O. M. Faltinsen, Sea Loads on Ships and Offshore Structures, Cambr. Univ. Press, Cambridge (1993). 
Liu Yuming, D. G. Dommermuth, and D. K. P. Yue, "A high-order spectral method for nonlinear 
wave-body interactions," J. Fluid Mech., 245, 115-136 (1992). 
M. S. Longuet-Higgins, "The mean forces exerted by waves on floating or submerged bodies with 
application to sand bars and wave power machines," Proc. Roy. Soc. Lond., Ser. A, 352, 463-480 
(1977). 
R. H. M. Huijmans, "Slowly varying wave drift forces in current," in: Nonlinear Water Waves: IUTAM 
Sympos., Tokyo, 1987. Springer, Berlin (1988), pp. 283-291. 
J. N. Newman, "The drift force and moment on ships in waves," J. Ship Res., 11, No. 1, 51-60 (1967). 
C. H. Lee and J. N. Newman, "First- and second-order wave effect on a submerged spheroid," J. Ship 
Res., 35, No. 3, 183-190 (1991). 
V. I. Bukreev, N. V. Gavrilov, and K. R. Znobishchev, "Experimental investigation of waves in a two- 
layer fluid with a velocity shift between the layers," in: Dynamics of Continuous Media [in Russian], 
Institute of Hydrodynamics, Novosibirsk, 64 (1984), pp. 3-10. 
J. Newman, Naval Hydrodynamics [Russian translation], Sudostroenie, Leningrad (1985). 
A. J. Hermans, E. Van Sabben, and J. A. Pinkster, "A device to extract energy from water waves," 
Appl. Ocean Res., 12, No. 4, 175-179 (1990). 
R. E. Taylor and J. Zietsman, "A comparison of localized finite element formulations for two- 
dimensional wave diffraction and radiation problems," Int. J. Numer. Meth. Eng., 17, No. 9, 1355- 
1384 (1981). 
I. V. Sturova, "Plane problem of hydrodynamic rolling of a body submerged in a two-layer fluid 
without forward speed," Fluid Dynamics, 29, No. 3,414-423 (1994). 

330 


